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The droplet collision algorithm of O'Rourke is currently the standard approach
to calculating collisions in Lagrangian spray simulations. This algorithm has a cost
proportional to the square of the number of computational particles, or “parcels.”
To more efficiently calculate droplet collisions, a technique applied to gas dynamics
simulations is extended for use in sprays. For this technique to work efficiently, it
must be able to handle the general case where the number of droplets in each parcel
varies. The present work shows how the no-time-counter (NTC) method can be
extended for the general case of varying numbers of droplets per parcel. The basis of
this improvement is analytically derived. The new algorithm is compared to closed-
form solutions and to the algorithm of O’'Rourke. The NTC method is several orders
of magnitude faster and slightly more accurate than O’Rourke’s method for several
test cases. The second part of the paper concerns implementation of the collision
algorithm into a multidimensional code that also models the gas phase behavior and
spray breakup. The collision computations are performed on a special collision mesh
that is optimized for both sample size and spatial resolution. The mesh is different
every time step to further suppress the artifacts that are common in the method of
O’Rourke. The parcels are then sorted into cells, so that a list of all the parcels in a
given cell are readily available. Next, each cell is individually checked to see if itis so
dense that a direct collision calculation is cheaper than the NTC method. The cheaper
method is applied to that cell. The final result is a method of calculating spray droplet
collisions that is both faster and more accurate than the current standard method of
O'Rourke. (©) 2000 Academic Press

INTRODUCTION

Stochastic collision models are commonly used in Lagrangian simulations of particu
and spray flows. Numerical results suggest that collision processes in sprays have a gre
fluence on the average drop size [1]. Unfortunately, droplet collisions can be very expen
to calculate. The direct simulation of every drop would resullfcollision computations
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every time step, wherd is the number of drops in the spray. This is prohibitively expensiv
for most purposes. The approach of Dukowicz can reduce this cost by representing the -
with a reduced number of computational particles [2]. Each particle, called a “parcel’
drops, representg physical droplets. This approach, when applied to rarefied gas c
namics simulations, is commonly known as the direct simulation Monte Carlo (DSM
technique [3]. However, in gas dynamics calculations, the valggisfa constant. In spray
modeling, the size of the droplets varies enormously. To apportion computational resou
efficiently, many spray models lgt range over several orders of magnitude [4].

To calculate collisions, almost all DSMC spray models currently use an algorithm sim
to that of O’Rourke [5]. O'Rourke’s collision algorithm has long been the preferred meth
of calculating spray collisions in Lagrangian spray simulations. This collision algorithm i
critical component of the KIVA suite of codes originating from Los Alamos Laboratories [
Additionally, this collision algorithm is widely used in commercial CFD codes. No oth
collision algorithm has been as useful or as popular as O’'Rourke’s. The current w
presents the next generation of spray collision modeling that addresses most of the reme
shortcomings in O’Rourke’s algorithm.

O’Rourke’s collision algorithm is consistent with the DSMC method, using a stoch:
tic algorithm to determine droplet collisions. O’Rourke’s collision algorithm is a type
“direct” technique, because it considers all possible collision partners. As is commc
done in gas dynamics calculations, O’Rourke’s algorithm only allows parcels within
same gas-phase cell to collide. O’Rourke assumes that there is a probability of any dr
colliding with any other droplet given by

oi v i At
pi=—1 (1)
The variabley; ; represents the relative velocity between the two dropletsiarapresents
the cell volume. In this equatiom; ; is the collision cross section of the two drops and i:
defined as

oij = +fj)2~ (2)

Thus, the mean expected number of collisions between a droplet in pacelthe drops
in parcelj is given by

— o jvj i At

=g €)
where the number of droplets in pardeis g;. O’Rourke then determined the number of
collisions by sampling from a Poisson distribution with a meagp ofA similar approach
has also been used in rarefied gas dynamics calculations and is known as the “di
method of Kac [3]. There are two differences between the schemes: (1) O’'Rourke all
for the possibility of a droplet from parcektriking more than one droplet in parcelnd
samples the number of collisions from the Poisson distribution; (2) O’Rourke’s algoritl
is generalized for the case qf# q;. Bird [3] points out that the direct approach of Kac
incurs a cost proportional thi2, whereN,, is the number of parcels in a cell. This is also
true of O’Rourke’s method.

To allow for a sufficient number of computational particles, algorithms with a cost pr

portional to N,f must be avoided. Such methods are too expensive for accurate statis
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representations of sprays. Lagrangian spray calculations must represent the spray pc
tion in two or three spatial dimensions, a temporal dimension, a multidimensional velo
space, and a drop-size dimension. In order to fully represent all of these characteristi
mensions, a model should use a very large number of computational particles. Howe
the cost ong algorithms is prohibitive for large numbers of particles.

Kitron et al.[6] applied the time-counter method, which has a cost linearly proportion
to Np, to sprays. However, Kitron used a fixed number of drops in each parcel. Also,
time-counter method, though historically important, has been faulted for its susceptibilit
statistical scatter. The creator of the time-counter method described the scheme as “obs
even before the work of Kitron was published [7]. In any case, it is not clear how the tin
counter method could be extended to parcels with different numbers of droplets. Witk
such generalization, a spray collision algorithm has limited utility.

A new approach to modeling droplet collisions based on the NTC algorithm is pi
posed. The NTC algorithm has been used by Abe [8] and Alexander and Garcia [9
gas dynamics simulations. This algorithm has a computational cost linearly proportionz
the number of computational particles and reduced variance when compared to the t
counter method. The technique randomly chooses a subset of candidate particles
the cell. These patrticles are then considered possible collision partners and are acc
with a probability proportional to their relative velocity and cross section. In the curre
work, the NTC approach will be generalized for the case of differing valuesasfd ap-
plied to test cases. Finally, an implementation into a multidimensional spray model will
presented.

THEORY

The following derivation is a new way of showing the mathematical basis of the N
method. The derivation also gives a final result that is generalized for the case of van
numbers of drops per parcel. A final check shows that the new scheme also gives the cc
number of collisions, on average, for each “class” of particle. The “class” refers to a reg
in the droplet velocity and radius space.

If a cell containsN droplets, which have a collision cross section given by Eq. (2), the
the expected number of collisions in the cell over a time intervaltaf given by summing
the probability of all possible collisions:

N N
1 vj joi,j At
Meon = = E E _. 4
coll 2i:1j:1 V2 ( )

The factor of one-half is a result of symmetry. If we group the individual droplets in
parcels having identical properties, then the double summation becomes

1 N N o i At

Vi,j0i,j
M = —= i i 5 5
coll 2;1%?1% V3 ()

whereN;, is the number of parcels in the cell. Evaluating this summation directly would |
as expensive as the Kac method, with the cost on the ordej.dﬂowever, this summation
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can be modified by pulling a constant factor outside the summation:

Meoy = (qUU)maxAtZ Z qjvi,joi,j ©6)

i1 (qva)max

The value of(quo)max IS Used for scaling the selection probability of a collision. The valu
chosen must be sufficiently large that the following restriction holds:

G vi.joi. |

(qvo ) max =1 %

Now it is assumed that a representative subsample of parcels may be randomly sel
from the set of parcels in the cell, such that

aNy

Zx. —aZx., (8)

wherea < 1 andy; is a characteristic of each parcel. Hence, a subset of the parcels is use
represent the larger population. This statistical approximation allows a constant multiy
to reduce the limits of summation. Using this relationship, the limits of the summations
Eq. (6) are both reduced:

Np (quo)maxAt Np (quo)maxAt
\/ 2% \/ 2% q] ’l)i ’ J O"I ’ J
I S T S ALY ©)

i =) (quo)max

This equation is written more succinctly by defining the quarttyg

Ng (quo )maxAt

2V (10)

cand —

This definition is used in the limits of the summation of Eq. (9).

Mcand Mcan

d
EDIE DI SILALA] (11)

i1 =1 qUJ)max

This equation is the final expression of the NTC method for application to parcels repres
ing varying numbers of drops. Equation (11) is mathematically equivalent to the summa
of Eq. (5). The difference is how one evaluates the summations. Equation (11) includ
summation oveMcang terms, while Eq. (5) includes a summation O\Pej terms. Both
Egs. (5) and (11) are statistical representations of Eq. (4).

In the limit of constant cross section and constariq. (11) reduces to the expression of
Alexander and Garcia [9]. The overall cost will be proportional to the product of the lim
of the summation, nameMcang¢ The value oMcangis linearly proportional td\,, because
g goes as AN,. The user of this model must make a sensible choic€qos )max for the
algorithm to be efficient. If the spray is so dense thikatnq> N§/2, then direct calculation
of collisions may be more efficient than the NTC algorithm for this cell.

The double summation of Eq. (11) is evaluated using an acceptance—rejection sch
The number of candidate pairs given Bangis selected with replacement from the cell
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population. Because the parcels are selected with replacement, multiple collisions per
step may occur between parcels. O’Rourke has observed that the consideration of mu
collisions is required for accurate results with large time steps in dense sprays [5].

After a pair has been selected, a uniform deviate from [0, 1) is used to determin
the candidate pair actually collides. A collision takes place between paraet$j if the
deviate, satisfies the inequality

r < JoVi%ii (12)
(qUo ) max

The variablegy represents the greater number of droplets betwieandg; . If the collision

is accepted, theq, the lesser number of droplets, actually participates in the collisio
This distinction is important in the case of droplet coalescence, where one parcel of d
absorbs the other. The differentiation of the parcels by the larger and smaller valyes
does not change the expected outcome of the scheme.

This differentiation is a subtle point that occurs only when the NTC method is &
plied to systems with varying values gf The number of possible collisions is limited
by the lesser number of droplets. However, the chance that collisions occur depend
the greater number of droplets. Thus, if the collision is accepted,gpmgllisions occur.
Because of this distinction, Eqg. (11) is written with one of theerms outside the inner
summation.

The NTC scheme is much more efficient than direct integration for large numbers
parcels in sparse sprays. The basic idea is shown in the Figs. 1-3. These figures repi
the chance of droplet collisions in a cell containing seven parcels. Omitting the trivial ca
of a parcel colliding with itself, there are 21 possible collision pairs, as shown in Fig.
A direct integration scheme would scan through all 21 possible pairs of parcels, checl
each for collision. The NTC scheme estimates the maximum chance of collision, shc
by the horizontal line in Fig. 2. This maximum is a quick and approximate calculation tt
impacts the speed of the code, but not the final answer.

The maximum probability is used to reduce the number of pairs considered for collisi
The number of pairs actually considered for collisioMig,n¢ The number of pairs indicated
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FIG. 1. Chance of collisions for 20 pairs of parcels.
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FIG. 2. The chance of collisions is bounded by an approximate estimate of the maximum, as shown by
horizontal bar.

by Mcangis selected at random, with replacement. Each of the pairs is tested for collis
using the probability shown in Fig. 3. The probability is scaled up by the same factor u
to reduce the number of collision pairs. The end result is, on average, the same as |
whole distribution shown in Fig. 1 were sampled directly.

The derivation of Eg. (9) guarantees that the average total number of collisions proce
will be correct. It can further be shown that the average number of collisions processec
any two classes of drop is correct, where each class is identified by its velocity and
size. For any two classes of particle represented by péregldj, the expected number of
collisions between the two classes over a short time interval is

_ OQu0pv12012At

Mio Vi

(13)

We now consider the prediction of the NTC scheme. The expected number of times
computational particles from classand j will be selected is equal to the probability of
the selection multiplied by the number of candidate pairs. The probability of seléctin
andj from the candidates is/leg because there are two ways to select these two particl
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FIG.3. The reduced sample space used by the NTC method. The number of pairs considered has been
down, and only seven possible pairs will be considered. Similarly, the chance of collision for these pairs has
scaled up, and each pair is more likely to be accepted.
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from the N, possible combinations. The number of candidate pairs is given by Eq. (1
The product of these two quantities is the expected number of times #matj will be
considered as collision partneidse,.

(quo )maxAt

Nsel = v

(14)

Giventhat andj are selected candidates, the expected number of collisions to be proce

is q multiplied by the probability of acceptance. The probability of acceptance is given

Eqg. (12). So the expected number of collisions, givenitlaaid j are selected candidates, is
Nexp _ Ogvi,joi,j _ Gidjvioij

= = . 15
Nsel a (qvo ) max (quo )max (15)

The productof Egs. (14) and (15) recovers the expected number of collisions beamegn

Nexp= q'q'”%. (16)
Thus, this scheme produces the correct expected number of collisions, on average
any two classes of particle as well as the correct total number of collisions. This derival
is sufficient to demonstrate the consistency of this usage of the NTC method. The derive
also reveals a subtle point that is often overlooked in applying the NTC method. The cor
result given by the NTC method in Eq. (16) requires the probability of selectingibott
andj to be Z/N,f. The implication of this assumption is that both parcels are selected w
replacement, allowing and j to occasionally indicate the same parcel. In contrast, tt
implementations given in Garcia [10] and Bird [7] do not allowo equalj. Fortunately,
the significance of this error is small if the number of parcels in the cell is large.

VALIDATION

To test the cost of the NTC scheme and verify the correct result, the algorithm has k
compared to analytical solutions and to O’Rourke’s scheme. The analytical solutions v
derived for this purpose and are simplifications of realistic problems. The test cases
used to check the overall prediction of the number of collisions, the computational c«
and the temporal and spatial order of accuracy of these schemes. The formal accura
O’Rourke’s model has never been reported.

The first test case was spatially uniform, with a range of drop size, velocity, and num
of drops per parcel. To test the total number of collision predictions, it was sufficient
calculate the number of collisions for a single time step. The effects of the collisions w
not considered, only the number of collisions between various velocity and size classes.
consideration of realistic collision outcomes would make it much more difficult to obta
an analytical solution. Furthermore, the improvement of the present work is directed c
at predicting the incidence of collision. O’Rourke’s models of the outcomes of collisit
can still be used with the NTC method [5].

The test case was a distributionNfdrops over a cylindrical volumé. The drops were
given sizes from [Ormax) and velocities in the axial direction from [Qmay). The size and



A NEW DROPLET COLLISION ALGORITHM 69

velocity were chosen independently based on a uniform deviate. The expected numb
collisions was calculated from the integral of the collision probability over the size a
velocity space of each possible partner. The integral is

'max F'max Umax Umax

N2At
Meol = / / / / fu(uy) fu(uo) fr (1) fr (1) |us — Uzl (ry + r2)? dug dup drydr. (17)
0 0

v

The functionsf represent the probability distribution functions, which in this case a
simply uniform distributions. The evaluation of this integral gives the following expect
number of collisions:
2 N2
Mcoll = —7nAtu3rTg\imaXN . (18)

A simulation was run with a volume of unity represented by a single cell. Because
test problem was spatially uniform, there were no concerns about spatial resolution.
parcels were randomly assigned a radius from zerotd 8-> and velocities from zero to
10?. The number of droplets per parcel was also randomly assigned, based on how r
parcels were used for the calculation. The parcels represented a totdldrioplets. The
simulation consisted of a single time step of 10

The most important difference between the two approaches may be seen in Fig. 4.
figure shows a comparison of the cost of each scheme using a single-processor 100-
computer. For the numbers of parcels used in this test case, the NTC method is o
of magnitude faster than the O’Rourke method. The cost of O’Rourke’s method she
a quadratic dependence on the number of parcels, and the NTC method shows a |
dependence. For clarity, an enlarged view of the cost of the NTC method is showt
Fig. 5.
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FIG. 4. The computational cost of each scheme is plotted versus the number of parcels for comparison
cost of O’Rourke’s scheme increases quadratically with the number of parcels. See Fig. 5 for a clearer preser
of the cost of the NTC scheme.
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FIG.5. The computational cost of the NTC scheme is plotted versus the number of parcels. The costincre
linearly with the number of parcels.

Figure 6 shows the average error in the predicted number of collisions for the new N
method and for the O’Rourke method. The error, as defined by

e = |Mtheo_ IVlsim| ’ (19)
Mtheo

was averaged over 50 independent runs for each data pdigd, is the prediction of
Eq. (18), andMgq, is the prediction of the numerical scheme. Both schemes are Mot
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FIG. 6. The average error of both schemes is plotted versus the number of parcels. The error is defin
Eqg. (19) and is averaged over 50 simulations for each data point. The average error decreases with the i
square root of the number of parcels.
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Carlo methods and show the characteristic convergence based on the inverse of the <
root of the number of parcels. The results show that both schemes are converging t
theoretical answer as the number of parcels increases. The random variance of the
schemes is comparable.

Both schemes were tested against a transient analytical solution to determine the «
of temporal accuracy. Note that neither this test nor the spatial test below measure:
accuracy of the Lagrangian particle tracking scheme. These tests only indicate the acci
of the predicted number of collisions. A single cell was used, but this time the outcome
the collision was considered so that a transient response could be observed. The drop
the initial population were all of one size, with a radiug@fThe velocity of the droplets
was bimodal, given by the following probability density function:

1 1
fu(u) = Ea(u — Ug) + Eé(u + Up). (20)

The s in Eq. (20) represents the Dirac delta function. The probability density functit
was only applied to one component of velocity; all others were set to zero. The vajue «
was constant for all drops.

The collision outcome was contrived to resemble droplet coalescence and to allc
closed-form solution. All collisions resulted in the elimination of one parcel, chosen
random from the pair. For a discussion of realistic collision outcomes, see O’'Rourke
Though the particles had nonzero velocities, their positions were not updated between
steps because of the spatial homogeneity of the problem. This situation produces a ¢
in the number of droplets due to collision. Because one colliding parcel is removed fr
the calculation and the other parcel is unchanged, the probability distribution functions
size and velocity are constant with respect to time. The solution for the number of drog
remaining at time can be found analytically to be

No

NO =116

(21)

The time scalet*, is defined as a combination of physical problem parameters as

po ¥ )
ano Noug

The quantityNy is the number of droplets at the beginning of the simulation. The err
for this test case was based on the absolute value of the difference between the num
and analytical predictions at tinte Random variation was not anticipated to be an issu
because the calculation is a multistep integration. Ten thousand parcels were used to ft
suppress statistical fluctuations. The results, showing first-order temporal accuracy fo
NTC method, are shown in Fig. 7. First-order accuracy is the best that can be expecte
most stochastic collision routines, since complicated collision outcomes preclude the u:
implicit methods. The method of O'Rourke shows less than first-order temporal accur
for small time steps. This lower accuracy may be evidence of slightly higher statisti
scatter in transient problems. Unlike in the previous steady-state test problems, collis
can change a parcel in this case. Since O’'Rourke’s method loops through parcels i
same order every time step, some parcels will consistently come first in the loop, and of
will consistently come later.
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FIG. 7. This figure shows the error in a temporal calculation over a time intervigltof= 0.785. The error
is defined as the difference in the analytical and numerical prediction in the number of droplets at the end ¢
time interval.

The parcels that come later in the loop will always have fewer possible collision partne
due to the results of the previous collisions. The NTC method demonstrates first-ol
accuracy for the complete range of time steps. Because collision partners are chos
random in the NTC method, itis unlikely that the order of storage could effect the outcor

As a test for spatial accuracy, another test case was constructed. This problem do
was a three-dimensional cube with a volume of unity. The size, velocity, and numbe
droplets for 20,000 parcels were selected from uniform probability density functions,
in the problem described by Eq. (17). However, thposition of the parcels was chosen
to produce an exponential distribution of number density, as given by the function in
equation

N(Y) = Nmax€Xp(—ay). (23)

and shown in Fig. 8. The parametercontrols the degree of spatial nonuniformity in the
problem. For the current work a value of 10.0 was used, producing a highly nonunifc
distribution. The value afihaxis calculated from the total number of droplets in the domair
The x andz locations of parcels were chosen from a uniform distribution. The analytic
prediction for the number of collisions over the domain was derived by integrating |
number of collisions predicted by Eq. (17) for a differential volume. Integrating over volur
for the number density given by Eq. (23) gives the predicted number of collisions ove
given time interval for a cube with one corner at the origin and the diagonally oppos
corner atlAX, Ay, Az) as

7 2 N2 AtAXA
JTUmaxrma;r;n‘;ax X Z[l — exp(—2a Ay)]. (24)

Mcoll =

Five computational cells were used in thelirection, one cell was used in tlalirection,
and varying numbers of cells were used in thdirection. Twenty thousand parcels were
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FIG. 8. The probability density function for the distribution of drops is plotted versuytbeordinate. The
value of« is 10.0, producing a highly nonuniform distribution.

used for each calculation. The error was defined to be the average number of collis
predicted by 50 simulations compared to the analytical prediction.

Because the droplets are considered to be uniformly spread throughout a computat
cell, underresolved simulations tend to underestimate the number density of the droy
This causes underresolved simulations to underpredict the number of collisions. W
spatial variations are sufficiently resolved, the NTC scheme is second-order accura
space. This result may be seen in Fig. 9. Due to the very high cost of running O’Rourl
scheme with a large number of parcels, only the NTC scheme was tested for sp
accuracy.

10°

* NTC
Second Order

10' ¢

Average Error [%]

10° |

10" :
102 10" 10°
Ay

FIG. 9. The spatial error of the NTC scheme is plotted versus the cell size idivection. For sufficiently
resolved cases, the scheme is second-order accurate in space.
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IMPLEMENTATION INTO A MULTIDIMENSIONAL CODE

Spray simulations require modeling of the gas phase and its interactions with the sy
Correctimplementation is quite difficult and requires special attention. A discussion of h
the previously described NTC method should be applied follows. This new implementat
is divided into five major portions:

1. Creation of a collision mesh.

2. Grouping of the parcels by their mesh location.

3. Cell-by-cell identification of the optimal method of calculating collisions.
4. Calculation of the incidence of collision.

5. Calculation of the outcome of each collision.

These five portions will each be described in detail. The entire algorithm will then be appl
to some test cases, and the results will be compared to O’Rourke’s algorithm.

1. Creation of a Collision Mesh

In O’'Rourke’s algorithm, only parcels within the same computational cell are allowed
collide. This approach is second-order in space, but suffers from the fact that gas-phase
are usually much too large for sufficient spatial resolution. The results tend to be seve
grid-dependent. Figure 10 shows a calculated hollow-cone spray in a dense gas environi
The dense ambient gas retards the expansion of the spray, increasing the number densi
the significance of droplet collisions. The same spray is modeled on a Cartesian mest
a polar mesh. Note that the entire shape of the spray is changed by the grid. The Cart
mesh turns the hollow-cone spray into a “clover-leaf” shape.

The clover-leaf artifact is a result of the correlation between the droplets’ velocity a
position. Droplets that have trajectories of almost 8fart can be located in the same cell
of a Cartesian mesh near the spray origin. The relative velocities between these parce
very large, and so collisions are very likely. The postcollisional velocities tend towart
mean velocity halfway between the original velocities because of coalescence and inel
bouncing. The polar mesh provides better resolution in the azimuthal direction and doe:
permit this artifact to form. In comparison, the Cartesian mesh only resolves the azimu
direction in 90 increments.

FIG. 10. A hollow-cone spray calculated using O’Rourke’s method on a polar mesh (left) and a Cartes
mesh (right). The spray is directed toward the viewer. The physical situation is the same for both cases; onl
mesh differs.



A NEW DROPLET COLLISION ALGORITHM 75

According to current modeling methodology, droplet collisions have no connection
the gas phase. Hence, there is no reason to rely on the gas-phase mesh. The new impl|
tation creates a polar collision mesh around the spray for optimal accuracy. By making
mesh polar, the azimuthal direction is better resolved, and parcels are grouped with r
appropriate collision partners. The use of a cylindrical collision mesh assumes that or
single spray is present. In the case of multiple sprays in the calculation, it would be pos:
to have several independent collision meshes if the sprays do not interact. However, il
most general case of multiple sprays that can interact, another grid strategy is require:

To further suppress numerical artifacts, the orientation of the collisional mesh is rando
rotated each time step around the axis of the injector by an angle from zema this
guarantees that azimuthal cell boundaries will change each time step. Due to the char
parcel locations, the radial and axial cell boundaries will also change each time step.

The extent of the collision mesh is dictated only by the location of the parcels. The m
need not include parts of the gas-phase domain that do not contain droplets. Addition
boundaries are of no concern because they do not directly affect droplet collisions. Bec
the collision mesh is polar, the collisional domain is naturally shaped like a cylinder. T
axis of the cylinder is the axis of the atomizer. Thus, the position of each parcel is meas
using a polar coordinate system determined by the location and orientation of the inje

The size of the collision mesh cells can be optimized so that the cells are sufficiently si
to capture important spatial information, yet large enough to have a statistically adeq
number of parcels in each cell. After the number of parcels is counted and the furthest e
of the parcels noted, the mesh resolution is set so that the average number of parcels ir
cell is about 5 to 10. This algorithm will then produce cells with a large number of parc
in cells in the dense regions of the spray where collisions are more important. In de
regions of the spray, it is desirable to have at least 20 parcels per cell. The sparse regic
the spray will have few parcels per cell, but will also have extremely low collision rates.
view of a collision mesh is shown in Fig. 11.

This linkage of the number of parcels to the collisional mesh means that it becor
imperative that the calculation contains a sufficient number of parcels. If the user choos
large number of parcels, then the calculation will demonstrate good statistical represent
of the spray as well as good spatial resolution. If the user fails to use enough parcels,
the calculation will fail in both respects. Fortunately, the current algorithm as a whole
much faster than O’Rourke’s collision model, and so the calculation can use a large nur
of parcels without significant penalty.

Once the collisional mesh is established, it is inexpensive to identify which cell a pat
resides in, due to the regularity of the mesh. The axial, radial, and azimuthal location of
parcel can easily be translated intg, andk indices or into a cell identification number.
This information is used for grouping the parcels into cells, as described below.

2. Grouping of the Cells by the Mesh Location

In the original implementation of O’Rourke’s collision model, the algorithm looped ov
all possible droplet pairs and performed a test to see if the two parcels were in the same
Only when the two parcels were located in the same cell were they considered colli
partners. The cost of this check is proportional to the number of parcels squared.

In the present algorithm, the parcels are sorted by their collision cell before any con
eration of collision. This step is required for the NTC algorithm, which requires knowled
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FIG. 11. A collision spray mesh. The lines of constant radius are omitted for clarity.

of the parcels that reside in a given cell. Grouping the parcels together by their cell
location has another advantage as well: looping over all possible collision partners becc
much cheaper because the loop limits only span the parcels of one cell. Looping over ¢
sion partners is required for the direct calculation of collisions. The direct consideratior
collision calculations using the grouping information will be referred to as direct single-c
collision (DSCC) calculation and is discussed in the next section.

The grouping process can be achieved very quickly with two loops through the num
of parcels [10]. A pointer array that indicates which parcels are in which cell is creat
During the first loop, the number of parcels in each cell is counted. An indexing array
filled with pointers to a parcel identification array. The indexing array is packed with t
location within the parcel identification array of the first parcel in each collisional ce
Then another sweep is made and the parcel identification array is filled with pointers to
individual parcels. This storage structure is illustrated in Fig. 12.

Index Array—Points to the beginning of storage for each cell
Index 1 Index 2 Index 3 Index 4

/N | |
\ICeuz\I«ICeuk
[ A A

Parcel Identification Array—Contains pointers to parcels

l

FIG. 12. Storage and sorting of parcel and cell information.



A NEW DROPLET COLLISION ALGORITHM 77

With this storage system, the code can access the list of parcels contained in any ¢
cell. The code looks in the indexing array to find where a cell’s storage begins in the par
identification array. The beginning of the cell’s storage is explicitly stored in the indexi
array, and the end of the storage can be found by looking where the next cell’s sto
begins. Then the pointers to parcels are used to access parcel information with ind
addressing.

3. Cell-by-Cell Identification of the Optimal Collision Algorithm

The current algorithm chooses between two methods of calculating the incidenc
droplet collision. The NTC algorithm is usually cheaper for sparse cells, and the DS
method may be cheaper for dense cells. DSCC integration refers to the consideratic
collisions between every possible parcel within a cell. This differs from O’Rourke’s meth
because the code does not have to scan through all parcels. The DSCC integration m
is the same as O’Rourke’s method but takes advantage of the cell grouping informatio

To see the effect of the grouping on the computational cost of direct collision calculati
consider the following example. L& parcels be located in a domain willy collision
cells. To loop over all possible collision partners without grouping reqNFeR iterations.

If the parcels are grouped by cell, then each cell will have, on avetdgd, parcels. A
loop over all the possible pairs within the cell would requité/N? iterations. If this is
repeated over all the cells, then the cost is rougify N.. However, in the creation of the
collisional mesh, the mesh size was set so that the average number of parcels per ce
equal to a constant from 5 to 10. Thi¢/ N, is a constant, and the computational cost o
looping over all possible collision pairs is linearly proportionaNo

Using the DSCC method, the code must consider collisions betNggarcels in a cell
for a cost proportional t(Ng/Z. The cost of the NTC method is proportional to the quantit
Mcang defined in Eq. (10). The constants of proportionality are believed to be similar.
on a cell-by-cell basis, the code scans through collision cells, estimating the cost of ¢
algorithm. The cheaper method is identified by comparmggz to Mcang There is an
alternative interpretation of the criterion that clarifies the meaning. The criterion for us
the DSCC method can be written as

N2
Mcand > 7') (25)

Using Eq. (10) and some algebraic manipulation, this is rewritten as
(QUO ) maxAt > ¥, (26)

This alternative form shows that the decision is actually a measure of how well the sy
is being resolved. The inequality compares the swept volume of one parcel to the vol
of the cell. Thus, the DSCC method may be used when the spray is poorly resolved b
number of parcelsqis large), when the time stefit is greater than a collision time, or
when a poor choice qqvo )max is made.

The DSCC method is cheaper when the spray is very dense or is underrepresentt
the number of parcels. In such an extreme case, the fundamental assumptions of the C
treatment are in doubt [3]. The expected number of parcels participating in collision
very large and may be a result of very high numbers of droplet collisions per time sf
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Alternatively, the number of droplets per parcel may be too large, cauding; to be
greater than the number of parcels in the cell. In the latter case, the user should incr
the number of parcels used in the collision calculation. Finally, the DSCC method may
cheaper due to a poor estimateM,.¢ In any case, the DSCC method should be cheap
than the NTC scheme only for a few cells in the densest part of the spray. Otherwise,
simulation should use a smaller time step or a larger number of parcels.

4. Calculation of the Incidence of Collision

The algorithm scans through each cell calculating collisions between parcels. Depen
on which is faster, the incidence of collision is calculated with either the NTC algorith
or the DSCC integration. If a large portion of the cells use the DSCC method, then
fundamental assumptions of sparse sprays probably have been violated as noted abo

5. Calculation of the Outcome of Each Collision

When droplets collide several outcomes are possible, such as bouncing, coalesc
and shattering. Recent work by Georjon investigated how to model the outcomes of ¢
sion [11]. For the present work, the outcomes of O’Rourke are used [5]. Based on the Wi
number and a stochastically chosen “offset parameter,” the parcels can coalesce or bo
The offset parameter is a measure of whether the collision is head-on or relatively oblic
O’Rourke’s model for inelastic bouncing was used in the current work.

One change has been made from O’Rourke’s collisional outcomes. O’Rourke consid
collisions from the point of view of the larger drop. In coalescence, the larger drop wol
absorb numerous smaller drops. However, this approach had a difficulty. Sometimes
parcel with the larger drops was more populous than the parcel with the smaller drops.
larger drops would lack a sufficient number of “mates” from the other parcel.

The current implementation notes which parcel is more populous. For coalescence
number of drops of the less populous parcel is now subtracted from the more populous pe
This method guarantees that there are sufficient mates for executing the coalescence n

SPRAY CALCULATIONS

The new collision algorithm has been applied to the same hollow-cone spray show
Fig. 10. The results are shown in Fig. 13 for Cartesian and polar meshes. The spray
no longer severely mesh dependent. They do not display the “clover-leaf” artifact foun
Fig. 10. As an additional benefit of the new algorithm, the calculations with the new collisi
algorithm required about 31% less CPU time for a spray and gas-phase calculation
12,000 parcels. The average number of parcels per cell was set to 5.0. This resulte
cells in the densest part of the spray with over 100 parcels per collision cell. This num
of computational particles far exceeds the minimum of 20 suggested by Alexander
Garcia [9].

Even with the improved collision model, there is a slight loss of spray axisymmetry on
Cartesian mesh due to the resolution of the gas-phase velocity and drag on the drops
gas-phase flow, which should be axisymmetric, cannot be perfectly rendered on a Cart
mesh. The gas-phase mesh would have to be extremely fine, to an impractical leve
achieve perfect axisymmetry. However, the new implementation is much better than
conventional approach of O’Rourke.
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FIG. 13. A hollow-cone spray calculated using the new collision algorithm on a polar mesh (left) anc
Cartesian mesh (right). The spray is directed toward the viewer. The physical situation is the same for both ¢
only the mesh differs.

CONCLUSIONS

The NTC collision scheme has been extended for spray calculations, where the numk
drops represented by a computational parcel varies significantly. This extension of the |
scheme was derived from the basic equation for the probability of collision of two drc
in a fixed volume. Comparison of the NTC scheme to an analytical solution showed
the average error decreases with the inverse square root of the number of parcels. The
scheme was also shown to be first-order accurate in time and second-order accurate in
A comparison of computational cost showed that the NTC scheme is much faster that
standard approach of O’Rourke. The cost of the NTC scheme was shown to increase lin
with the number of parcels, while the cost of O’'Rourke’s method increases quadratic:
Because of the reduced cost, the NTC method will allow computational spray models to
far larger numbers of parcels and achieve a superior sampling of the droplet characteri

Implementation into a multidimensional code has also been described. A special colli
mesh is used to achieve a compromise between spatial resolution and sample size ir
cell. By grouping the parcels into cells, the code can choose the fastest algorithm on a
by-cell basis. The grouping allows the application of either the NTC method or a cell.
form of O’'Rourke’s method called the direct single-cell collision scheme. For very der
cells, the DSCC calculation is faster, and for all other cells the NTC method is fas
The new implementation is considerably faster than the method of O’'Rourke and doe:
demonstrate severe grid-dependent artifacts.
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